Задания егэ по физике 2022
Содержание:
- Основные понятия и законы кинематики
- Квантовая физика и элементы астрофизики
- Краткие конспекты по физике. 10-11 класс — в помощь застрявшим в пути
- Физика 11 класс. Все формулы и определения
- Основные теоретические сведения
- Подготовка к олимпиадам: старшие школьники (9–11 классы)
- Электростатика
- Структура заданий ЕГЭ по физике-2022
Основные понятия и законы кинематики
кинематикойМеханическим движениемСистемой отсчётаТелом отсчётаМатериальной точкойТраекториейпрямолинейноекриволинейное
Путь — это длина траектории, которую описывает материальная точка за данный промежуток времени. Это скалярная величина.Перемещение — это вектор, соединяющий начальное положение материальной точки с её конечным положением (см. рис.).
Очень важно понимать, чем путь отличается от перемещения. Самое главной отличие в том, что перемещение — это вектор с началом в точке отправления и с концом в точке назначения (при этом абсолютно неважно, каким маршрутом это перемещение совершалось)
А путь — это, наборот, скалярная величина, отражающая длину пройденной траектории.
Равномерным прямолинейным движением называют движение, при котором материальная точка за любые равные промежутки времени совершает одинаковые перемещенияСкоростью равномерного прямолинейного движения называют отношение перемещения ко времени, за которое это перемещение произошло:
Для неравномерного движения пользуются понятием средней скорости. Часто вводят среднюю скорость как скалярную величину. Это скорость такого равномерного движения, при котором тело проходит тот же путь за то же время, что и при неравномерном движении:
Мгновенной скоростью называют скорость тела в данной точке траектории или в данный момент времени.Равноускоренное прямолинейное движение — это прямолинейное движение, при котором мгновенная скорость за любые равные промежутки времени изменяется на одну и ту же величину
Ускорением
Зависимость координаты тела от времени в равномерном прямолинейном движении имеет вид: x = x + Vxt, где x — начальная координата тела, Vx — скорость движения.Свободным падением называют равноускоренное движение с постоянным ускорением g = 9,8 м/с2, не зависящим от массы падающего тела. Оно происходит только под действием силы тяжести.
Скорость при свободном падении рассчитывается по формуле:
Перемещение по вертикали рассчитывается по формуле:
Одним из видов движения материальной точки является движение по окружности. При таком движении скорость тела направлена по касательной, проведённой к окружности в той точке, где находится тело (линейная скорость). Описывать положение тела на окружности можно с помощью радиуса, проведённого из центра окружности к телу. Перемещение тела при движении по окружности описывается поворотом радиуса окружности, соединяющего центр окружности с телом. Отношение угла поворота радиуса к промежутку времени, в течение которого этот поворот произошёл, характеризует быстроту перемещения тела по окружности и носит название угловой скорости
ω:
Угловая скорость связана с линейной скоростью соотношением где r — радиус окружности.
Время, за которое тело описывает полный оборот, называется периодом обращения. Величина, обратная периоду — частота обращения — ν
Поскольку при равномерном движении по окружности модуль скорости не меняется, но меняется направление скорости, при таком движении существует ускорение. Его называют центростремительным ускорением, оно направлено по радиусу к центру окружности:
Квантовая физика и элементы астрофизики
Наиболее трудна для понимания старшеклассниками квантовая физика, изучающая квантовую теорию поля, квантовую механику и математическое описание процессов. Разрабатываться это направление начало только в XX веке, благодаря работам Эйнштейна, Планка, Шредингера, Гейзенберга и других ученых. В школьной программе оно занимает не так много места, как другие разделы, поэтому количество заданий по квантовой физике несколько меньше.
Остановимся на некоторых элементах содержания, которые необходимо знать, чтобы успешно пройти испытание.
Гипотеза и формула Планка. Фотон, его энергия и импульс.
Фотоэффект, уравнение Эйнштейна. Волны де Бройля.
Модель атома. Работы Бора. Фотоны, их поглощение и излучение.
Массовое число и заряд ядра.
Строение Солнечной системы. Характеристики звезд и наука об их происхождении.
В экзаменационной работе квантовой физике и астрофизике посвящены задания №19–21 и №24 первой части. Задачи №26, 27 и 32 основаны на знании школьниками нескольких разделов: кроме квантовой физики, еще механики и электродинамики. Основные формулы, имеющие отношение к этой теме, вынесены в отдельную таблицу кодификатора.
Изучения одной теории по физике для подготовки к ЕГЭ недостаточно, нужно еще применять эти знания на практике, поэтому важную роль играет умение решать задачи. Участники должны быть способны анализировать графики и таблицы, интерпретировать результаты экспериментов, выявлять соответствия, разбираться в изменении физических величин в процессах.
Перед выпускниками школ с хорошим знанием физики и высоким баллом ЕГЭ открываются неплохие перспективы дальнейшего образования. А талантливый студент или аспирант вполне может трудоустроиться в крупную компанию и в полной мере реализовать свой потенциал.
Уравнение Менделеева – Клайпертона. Закон Дальтона.
Электродинамика, оптика и СТО
Гипотеза и формула Планка.
17.09.2019 2:55:00
2019-09-17 02:55:00
Краткие конспекты по физике. 10-11 класс — в помощь застрявшим в пути
- Подробности
- Просмотров: 1006
Кинематика
Прямолинейное равномерное движение и решение задач ……… смотреть
Закон сложения скоростей и решение задач ……… смотреть
Движение с постоянным ускорением и решение задач ……… смотреть
Свободное падение ……… смотреть
Движение тела, брошенного под углом к горизонту ……… смотреть
Решение задач. Тело, брошенное под углом к горизонту ……… смотреть
Криволинейное движение ……… смотреть
Молекулярная физика. Термодинамика
Основные положения МКТ. Масса и размер молекул. Количество вещества ……… смотреть
Взаимодействие молекул. Строение твердых тел, жидкостей и газов ……… смотреть
Идеальный газ. Основное уравнение МКТ ……… смотреть
Температура. Тепловое равновесие. Абсолютная шкала температур ……… смотреть
Уравнение состояния идеального газа ……… смотреть
Изопроцессы. Газовые законы ……… смотреть
Взаимные превращения жидкостей и газов. Влажность воздуха ……… смотреть
Твердые тела. Кристаллические тела. Аморфные тела ……… смотреть
Электростатика
Электрический заряд. Электризация. Закон сохранения электрического заряда. Закон Кулона. Единица электрического заряда……… смотреть
Близкодействие и дальнодействие. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей. Силовые линии электрического поля……… смотреть
Проводники и диэлектрики в электростатическом поле. Поляризация диэлектриков……… смотреть
Потенциальная энергия тела в электростатическом поле. Потенциал электростатического поля и разность потенциалов. Связь между напряженностью электростатического поля и разхностью потенциалов……… смотреть
Электроемкость. Конденсаторы. Энергия заряженного конденсатора……… смотреть
Законы постоянного тока
смотретьсмотреть
Электрический ток в различных средах
Электронная проводимость металлов. Зависимость сопротивления проводника от температуры. Сверхпроводимость……… смотреть
Электрический ток в полупроводниках. Р-n переход. Полупроводниковые приборы……… смотреть
Электрический ток в вакууме. Вакуумный диод. Электронно-лучевая трубка……… смотреть
Электрический ток в жидкостях. Закон электролиза……… смотреть
Электрический ток в газах……… смотреть
Контрольные вопросы к зачету по теме: Электрический ток в различных средах………. смотреть
Электромагнитное поле
Взаимодействие токов. Магнитное поле. Вектор магнитной индукции. Сила Ампера ……… смотреть
Действие магнитного поля на движущийся заряд.Магнитные свойства вещества ……… смотреть
Явление электромагнитной индукции. Магнитный поток. Направление индукционного тока. Правило Ленца……… смотреть
ЭДС электромагнитной индукции. Вихревое электрическое поле……… смотреть
ЭДС индукции в движущихся проводниках……… смотреть
Самоиндукция. Индуктивность. Энергия магнитного поля. Вопросы к пр/работе ……… смотреть
Оптика
Природа света. Измерение скорости света ……… смотреть
Световой луч. Основные свойства линзы ……… смотреть
Построение изображения точки в линзах ……… смотреть
Построение изображения предмета в линзах ……… смотреть
Отражение света……… смотреть
Преломление света……… смотреть
Полное внутреннее отражение……… смотреть
Дисперсия света……… смотреть
Интерференция света……… смотреть
Дифракция света……… смотреть
Поляризация света……… смотреть
Атомная физика
Строение атома………
Квантовые постулаты Бора………
Методы регистрации и наблюдения элементарных частиц………
Естественная радиоактивность………
Виды радиоактивного распада………
Закон радиоактаивного распада………
Ядерные силы………
Открытие электрона, протона, нейтрона………
Строение ядра атома………
Изотопы………
Энергия связи ядра и дефект масс………
Ядерные реакции, энергетический выход ядерной реакции………
Деление ядер урана. Цепная реакция………
Ядерный реактор. Атомная бомба………
Термоядерная реакция. Водородная бомба………
Топливно-энергетические ресурсы. Ядерная энергетика………
Назад в раздел «10-11 класс»
Физика 11 класс. Все формулы и определения
Формулы 7 класс
Формулы 8 класс
Формулы 9 класс
Формулы 10 класс
В пособии «Физика 11 класс. Все формулы и определения» представлено 30 тем за 11 класс.
Содержание (быстрый переход):
1 Магнитное поле и его свойства
Магнитное поле и его свойства. Опыт Ампера. Магнитное поле. Вектор магнитной индукции. Модуль вектора магнитной индукции
Сила Ампера. Сила Лоренца. Движение q в однородном магнитном поле.
Явление электромагнитной индукции (ЭМИ). Магнитный поток. Правило Ленца. Закон ЭМИ.
Самоиндукция. Проявление самоиндукции. Индуктивность. Энергия МП тока. Теория Максвелла
5 Механические колебания
Механические колебания. Условия возникновения свободных колебаний. Характеристики механических колебаний. Математический маятник. Гармонические колебания.
Фаза колебаний. Сдвиг фаз колебаний. Затухающие и вынужденные колебания
Механические волны. Причины возникновения. Продольные волны. Распространение волн в упругих средах
Колебательный контур. Электромагнитные колебания. Аналогия. Формула Томсона
Переменный ток. Активное сопротивление. Средняя мощность. Резонанс
Генерирование электроэнергии. Индукционный генератор переменного тока. Передача электроэнергии
Трансформаторы. Устройство трансформатора. Работа нагруженного трансформатора и на холостом ходу
Электромагнитные волны. Опыты Герца.
Принципы радиосвязи. Амплитудная модуляция. Детектирование. Распространение радиоволн. Радиолокация
Световые волны.
Закон отражения света. Закон преломления света
Линза. Виды линз. Оптическая сила линз. Формула тонкой линзы. Построение изображения в линзах.
Свойства световых волн. Опыты Ньютона. Интерференция света. Дифракция. Естественный свет
18 Элементы теории относительности
Элементы теории относительности. Принцип относительности. Постулаты теории. Основные следствия из теории относительности
Излучение и спектры. Виды излучений. Виды спектров. Спектральный анализ
Виды электромагнитных излучений. Инфракрасное и ультрафиолетовое излучения. Рентгеновские лучи.
Световые кванты. Фотоэффект. Законы фотоэффекта.
Теория фотоэффекта. Формула Планка. Уравнение Эйнштейна. Фотоны. Корпускулярно-волновой дуализм света.
Строение атома. Опыт Резерфорда. Планетарная модель атома и ее противоречия. Постулаты Бора.
Лазеры. Индуцированное излучение. Свойства лазерного излучения. Принцип действия лазера
25 Методы наблюдения и регистрации элементарных частиц
Методы наблюдения и регистрации элементарных частиц. Счетчик Гейгера. Камера Вильсона. Пузырьковая камера. Метод толстослойных фотоэмульсий
Явление радиоактивности. Опыт Резерфорда. Свойства излучений. Закон радиоактивного распада. Изотопы.
Строение атомного ядра. Открытие нейтрона. Модель ядра. Энергия связи атомных ядер. Ядерные реакции
Деление ядер урана. Механизм деления урана. Цепные ядерные реакции. Образование плутония
Ядерный реактор. Термоядерные реакции
30 Биологическое действие радиоактивных излучений
Биологическое действие радиоактивных излучений. Поглощенная доза излучений. Экспозиционная доза. Эквивалентная доза поглощенного излучения. Радиационные эффекты
Формулы 7 класс
Формулы 8 класс
Формулы 9 класс
Формулы 10 класс
Основные теоретические сведения
Импульс тела
Импульсом (количеством движения) тела называют физическую векторную величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р. Импульс тела равен произведению массы тела на его скорость, т.е. он рассчитывается по формуле:
Направление вектора импульса совпадает с направлением вектора скорости тела (направлен по касательной к траектории). Единица измерения импульса – кг∙м/с.
Изменение импульса одного тела находится по формуле (обратите внимание, что разность конечного и начального импульсов векторная):
где: pн – импульс тела в начальный момент времени, pк – в конечный. Главное не путать два последних понятия.
Абсолютно упругий удар – абстрактная модель соударения, при которой не учитываются потери энергии на трение, деформацию, и т.п. Никакие другие взаимодействия, кроме непосредственного контакта, не учитываются. При абсолютно упругом ударе о закрепленную поверхность скорость объекта после удара по модулю равна скорости объекта до удара, то есть величина импульса не меняется. Может поменяться только его направление. При этом угол падения равен углу отражения.
Абсолютно неупругий удар – удар, в результате которого тела соединяются и продолжают дальнейшее своё движение как единое тело. Например, пластилиновый шарик при падении на любую поверхность полностью прекращает свое движение, при столкновении двух вагонов срабатывает автосцепка и они так же продолжают двигаться дальше вместе.
Закон сохранения импульса
При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая система называется замкнутой.
В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой. Этот фундаментальный закон природы называется законом сохранения импульса (ЗСИ). Следствием его являются законы Ньютона. Второй закон Ньютона в импульсной форме может быть записан следующим образом:
Как следует из данной формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:
Аналогично можно рассуждать для равенства нулю проекции силы на выбранную ось. Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:
Аналогичные записи можно составить и для остальных координатных осей. Так или иначе, нужно понимать, что при этом сами импульсы могут меняться, но именно их сумма остается постоянной. Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны.
Сохранение проекции импульса
Возможны ситуации, когда закон сохранения импульса выполняется только частично, то есть только при проектировании на одну ось. Если на тело действует сила, то его импульс не сохраняется. Но всегда можно выбрать ось так, чтобы проекция силы на эту ось равнялась нулю. Тогда проекция импульса на эту ось будет сохраняться. Как правило, эта ось выбирается вдоль поверхности по которой движется тело.
Многомерный случай ЗСИ. Векторный метод
В случаях если тела движутся не вдоль одной прямой, то в общем случае, для того чтобы применить закон сохранения импульса, нужно расписать его по всем координатным осям, участвующим в задаче. Но решение подобной задачи можно сильно упростить, если использовать векторный метод. Он применяется если одно из тел покоится до или после удара. Тогда закон сохранения импульса записывается одним из следующих способов:
В этих формулах буквой υ обозначены скорости тел до соударения, а буквой u обозначены скорости тел после соударения. Из правил сложения векторов следует, что три вектора в этих формулах должны образовывать треугольник. Для треугольников применяется теорема косинусов. Если правильно записать соответствующую теорему косинусов, то зачастую получается уравнение из которого можно найти нужную величину. Однако, иногда к правильно записанной теореме косинусов еще нужно будет добавить правильно записанный закон сохранения энергии (смотрите следующий раздел). В этом случае получится система уравнений из которых наверняка можно будет найти нужную величину.
Подготовка к олимпиадам: старшие школьники (9–11 классы)
Наша главная цель — подготовка к различным этапам Всероссийской олимпиады школьников по физике, а также к олимпиадам первого уровня: Московской олимпиаде школьников по физике, «Физтех», «Покори Воробьёвы горы!» и «Росатом». Все они дают максимальные льготы при поступлении в вуз.
Теоретическая подготовка олимпиадников — статьи журнала «Квант».
Мы занимаемся по специальным листкам, которые приведены ниже. Листки содержат:
- все задачи предпоследнего (нынче это региональный этап, а до 2009 года — окружной или зональный) и заключительного этапов Всероссийской олимпиады школьников по физике за всё время её существования (с 1991/92 года по настоящий момент);
- все задачи МОШ по физике с 2006 года;
- все типы задач заключительных этапов олимпиады «Физтех» с 2007 года;
- все типы задач вступительных экзаменов в МФТИ начиная с 1991 года, ибо знакомство с идеями задач прежних лет — залог успеха на текущих олимпиадах (ярким примером служит листок «Горизонтальная сила Архимеда»; аналогичные примеры дублирования идей с интервалом 3—10—20 лет встретятся вам и во многих других листках);
- все задачи заключительных этапов олимпиады «Покори Воробьёвы горы!» с 2014 года;
- все задачи заключительных этапов олимпиады «Росатом» с 2011 года;
- все задачи заключительных этапов олимпиады «Курчатов» с 2014 года (с момента включения её в перечень Минобрнауки);
- избранные задачи олимпиады «Ломоносов».
- избранные задачи Международной физической олимпиады (IPhO) и Азиатской физической олимпиады (APhO).
Электростатика
Электрический заряд может быть найден по формуле:
Линейная плотность заряда:
Поверхностная плотность заряда:
Объёмная плотность заряда:
Закон Кулона (сила электростатического взаимодействия двух электрических зарядов):
Где: k — некоторый постоянный электростатический коэффициент, который определяется следующим образом:
Напряжённость электрического поля находится по формуле (хотя чаще эту формулу используют для нахождения силы действующей на заряд в данном электрическом поле):
Принцип суперпозиции для электрических полей (результирующее электрическое поле равно векторной сумме электрических полей составляющих его):
Напряженность электрического поля, которую создает заряд Q на расстоянии r от своего центра:
Напряженность электрического поля, которую создает заряженная плоскость:
Потенциальная энергия взаимодействия двух электрических зарядов выражается формулой:
Электрическое напряжение это просто разность потенциалов, т.е. определение электрического напряжения может быть задано формулой:
В однородном электрическом поле существует связь между напряженностью поля и напряжением:
Работа электрического поля может быть вычислена как разность начальной и конечной потенциальной энергии системы зарядов:
Работа электрического поля в общем случае может быть вычислена также и по одной из формул:
В однородном поле при перемещении заряда вдоль его силовых линий работа поля может быть также рассчитана по следующей формуле:
Определение потенциала задаётся выражением:
Потенциал, который создает точечный заряд или заряженная сфера:
Принцип суперпозиции для электрического потенциала (результирующий потенциал равен скалярной сумме потенциалов полей составляющих итоговое поле):
Для диэлектрической проницаемости вещества верно следующее:
Определение электрической ёмкости задаётся формулой:
Ёмкость плоского конденсатора:
Заряд конденсатора:
Напряжённость электрического поля внутри плоского конденсатора:
Сила притяжения пластин плоского конденсатора:
Энергия конденсатора (вообще говоря, это энергия электрического поля внутри конденсатора):
Объёмная плотность энергии электрического поля:
Структура заданий ЕГЭ по физике-2022
Экзаменационная работа состоит из двух частей, включающих в себя 32 задания.
Часть 1 содержит 26 заданий.
- В заданиях 1–4, 8–10, 14, 15, 20, 25–26 ответом является целое число или конечная десятичная дробь.
- Ответом к заданиям 5–7, 11, 12, 16–18, 21, 23 и 24 является последовательность двух цифр.
- Ответом к заданию 13 является слово.
- Ответом к заданиям 19 и 22 являются два числа.
Часть 2 содержит 6 заданий. Ответ к заданиям 27–32 включает в себя подробное описание всего хода выполнения задания. Вторая часть заданий (с развёрнутым ответом) оцениваются экспертной комиссией на основе критериев.
Темы ЕГЭ по физике, которые будут в экзаменационной работе
- Механика (кинематика, динамика, статика, законы сохранения в механике, механические колебания и волны).
- Молекулярная физика (молекулярно-кинетическая теория, термодинамика).
- Электродинамика и основы СТО (электрическое поле, постоянный ток, магнитное поле, электромагнитная индукция, электромагнитные колебания и волны, оптика, основы СТО).
- Квантовая физика и элементы астрофизики (корпускулярноволновой дуализм, физика атома, физика атомного ядра, элементы астрофизики).
Продолжительность ЕГЭ по физике
На выполнение всей экзаменационной работы отводится 235 минут.
Примерное время на выполнение заданий различных частей работы составляет:
- для каждого задания с кратким ответом – 3–5 минут;
- для каждого задания с развернутым ответом – 15–20 минут.
Что можно брать на экзамен:
- Используется непрограммируемый калькулятор (на каждого ученика) с возможностью вычисления тригонометрических функций (cos, sin, tg) и линейка.
- Перечень дополнительных устройств и материалов, использование которых разрешено на ЕГЭ, утверждается Рособрнадзором.
Важно!!! не стоит рассчитывать на шпаргалки, подсказки и использование технических средств (телефонов, планшетов) на экзамене. Видеонаблюдение на ЕГЭ-2022 усилят дополнительными камерами
Баллы ЕГЭ по физике
- 1 балл — за 1-4, 8, 9, 10, 13, 14, 15, 19, 20, 22, 23, 25, 26, задания.
- 2 балла — 5, 6, 7, 11, 12, 16, 17, 18, 21, 24, 28.
- 3 балла — 27, 29, 30, 31, 32.
Всего: 53 баллов (максимальный первичный балл).
Что необходимо знать при подготовки заданий в ЕГЭ:
- Знать/понимать смысл физических понятий, величин, законов, принципов, постулатов.
- Уметь описывать и объяснять физические явления и свойства тел (включая космические объекты), результаты экспериментов… приводить примеры практического использования физических знаний
- Отличать гипотезы от научной теории, делать выводы на основе эксперимента и т.д.
- Уметь применять полученные знания при решении физических задач.
- Использовать приобретенные знания и умения в практической деятельности и повседневной жизни.
С чего начать подготовку к ЕГЭ по физике:
- Изучать теорию, необходимую для каждого заданий.
- Тренироваться в тестовых заданиях по физике, разработанные на основе демонстрационного варианта ЕГЭ. На нашем сайте задания и варианты по физике будут пополняться.
- Правильно распределяйте время.
Желаем успеха!