Биотехнология — biotechnology

Направления биотехнологии

Используя живые организмы в своих целях, человек уже сегодня может добывать необходимые вещества, перерабатывать отходы в полезные удобрения, лечить различные болезни и многое другое. Наиболее активно в настоящее время развиваются следующие направления биотехнологии.

– Микробиологический синтез – производство необходимых веществ и субстанций с использованием микроорганизмов. Уже сегодня этот способ используется при производстве спирта, иммобилизованных ферментов и ряда других веществ.

– Генная инженерия – своеобразное «конструирование» генома живого существа с целью получения организма с заданными свойствами. Методы генной инженерии в последние десятилетия произвели буквально революцию в сельском хозяйстве, создав новые, чрезвычайно устойчивые к неблагоприятным внешним явлениям культурные растения.

– Космическая биотехнология – направление, находящееся сегодня в стадии начального развития. Ведутся исследования по применению биотехнологии в космосе, исследуются перспективы получения кристаллических белков и других материалов.

– Биогидрометаллургия – извлечение металла из руды при помощи микроорганизмов. В результате деятельности бактерий образуются растворимые соли металла, которые переходят в раствор, а затем извлекаются и перерабатываются обычным способом.
В недалёком будущем биотехнологические процессы смогут заменить многие грязные производства, сделав окружающий нас мир более привлекательным, безопасным и удобным для жизни.

История биотехнологии

Как бы это странно ни звучало, но свои истоки биотехнология берет с далекого прошлого, когда люди только начинали заниматься виноделием, хлебопечением и другими способами приготовления пищи. К примеру, биотехнологический процесс брожения, в котором активно участвовали микроорганизмы, был известен еще в древнем Вавилоне, где широко применялся.

Как науку, биотехнологию стали рассматривать только в начале XX века. Ее основоположником стал французский ученый, микробиолог Луи Пастер, а сам термин впервые ввел в обиход венгерский инженер Карл Эреки (1917 год). XX век был ознаменован бурным развитием молекулярной биологии и генетики, где активно применялись достижения химии и физики. Одним из ключевых этапов исследования стала разработка методов культивирования живых клеток. Изначально для промышленных целей начинали выращивать только грибы и бактерии, но спустя несколько десятилетий ученые могут создавать любые клетки, полностью управляя их развитием.

В начале XX века активно развивалась бродильная и микробиологическая промышленность. В это время предпринимаются первые попытки по налаживанию производства антибиотиков. Разрабатываются первые пищевые концентраты, контролируется уровень ферментов в продуктах животного и растительного происхождения. В 1940 году ученым удалось получить первый антибиотик – пенициллин. Это стало толчком к развитию промышленного производства лекарств, возникает целая отрасль фармацевтической промышленности, что представляет собой одну из ячеек современной биотехнологии.

Сегодня биотехнологии используются в пищевой промышленности, медицине, сельском хозяйстве и многих других сферах человеческой жизнедеятельности. Соответственно появилось множество новых научных направлений с приставкой «био».

Основное

ОПИСАНИЕ ДЕЯТЕЛЬНОСТИ ЦКП «ПРОМЫШЛЕННЫЕ БИОТЕХНОЛОГИИ»

В ФИЦ Биотехнологии РАН функционирует центр коллективного пользования научным оборудованием «Промышленные биотехнологии», организованный в 2007 году на базе Института биохимии им.А.Н.Баха.

Работы, проводимые на базе ЦКП «Промышленные биотехнологии», направлены на разработку новых методических подходов в области геномных и постегеномных технологий, биоинженерии, системной, синтетической и структурной биологии. ЦКП способствует реализации проектов, направленных на создание методами биологического синтеза биотехнологических продуктов для использования в промышленности, сельском хозяйстве и биомедицине как в традиционных (биологически активные соединения, продукты питания, корма для животных и др.), так и новых областях (производство рекомбинантных белков, биополимеров, продуктов тонкого и основного органического синтеза, биоразлагаемых пластиков).

В ЦКП «Промышленные биотехнологии» действуют 6 отделений:

  • Отделение хроматографических методов исследования;
  • Отделение химических методов анализа;
  • Отделение биоинженерии;
  • Отделение управляемого культивирования микроорганизмов;
  • Отделение масс-спектрометрического анализа и анализа низкомолекулярных метаболитов;
  • Отделение спектральных методов исследований.

ЦКП «Промышленные биотехнологии» оснащен современным высокотехнологичным научным оборудованием для проведения исследований в области микробиологии, ферментных технологий, молекулярной биологии и генной инженерии, а также для масштабирования технологий производства изделий медицинского назначения.

Основные направления испытаний и исследований, проводимых в ЦКП «Промышленные биотехнологии»:

  • Испытания эфирных масел
  • Испытания жирных масел
  • Испытания масложировой продукции
  • Исследования продукции винодельческой, ликероводочной и спиртовой промышленности
  • Исследования продукции производства безалкогольных напитков и минеральных вод, в том числе композиции, концентраты, концентрированные основы для безалкогольных напитков
  • Исследования методами жидкостной хроматографии ВЭЖХ (HPLC) и ВЭЖХ-МС (LC-MS)
  • Исследования методами газовой хроматографии (ГХ) и ГХ-МС
  • Исследования методоами капиллярного электрофореза
  • Исследования фармпрепаратов
  • Культивирование микроорганизмов

Центр коллективного пользования предоставляет заинтересованным пользователям услуги по проведению научных исследований с использованием оборудования ЦКП «Промышленные биотехнологии».

Краткая информация:

Наименование ЦКП: Промышленные биотехнологии
Базовая организация: Федеральное государственное учреждение «Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук»
Фактический адрес размещения ЦКП: 119071 Российская Федерация, г. Москва, Ленинский проспект, д.33, стр. 2
Год создания ЦКП: 2007
Сайт ЦКП: http://ckp.inbi.ras.ru
ЦКП на сайте «Научно-технологическая инфраструктура Российской Федерации»: http://ckp-rf.ru/ckp/3035/

Контакты:
Врио руководителя ЦКП «Промышленные биотехнологии»
Липкин Алексей Валерьевич, к.х.н.

  +7 (495) 660-34-30 доб. 175lipus57@yahoo.com http://ckp.inbi.ras.ru

Определение

Концепция биотехнологии включает в себя широкий спектр процедур для модификации живых организмов в соответствии с целями человека, начиная с одомашнивания животных, выращивания растений и их «улучшения» посредством селекционных программ, использующих искусственный отбор и гибридизацию . Современное использование также включает генную инженерию, а также технологии культивирования клеток и тканей . Американское химическое общество определяет биотехнологию как применение биологических организмов, систем или процессов в различных отраслях промышленности для изучения науки о жизни и улучшении стоимости материалов и организмов , таких как фармацевтика, культуры и скот. Согласно Европейской федерации биотехнологий , биотехнология — это интеграция естествознания и организмов, клеток и их частей, а также молекулярных аналогов продуктов и услуг. Биотехнология основана на фундаментальных биологических науках (например, молекулярной биологии , биохимии , клеточной биологии , эмбриологии , генетике , микробиологии ) и, наоборот, предоставляет методы для поддержки и проведения фундаментальных исследований в области биологии.

Биотехнология является исследование и разработка в лаборатории с помощью биоинформатики для разведки, добычи, эксплуатации и производства от любых живых организмов и любого источника биомассы с помощью биохимической инженерии , где можно было бы запланированными высокой добавленной стоимостью (воспроизведен биосинтез , например , ), спрогнозированы, сформулированы, разработаны, изготовлены и проданы в целях устойчивого функционирования (для возврата от бездонных первоначальных инвестиций в НИОКР) и получения долговременных патентных прав (для исключительных прав на продажу, а до этого — для получения национальных и международное одобрение результатов экспериментов на животных и людей, особенно в фармацевтической отрасли биотехнологии, для предотвращения любых необнаруженных побочных эффектов или проблем безопасности при использовании продуктов). Использование биологических процессов, организмов или систем для производства продуктов, которые, как ожидается, улучшат жизнь людей, называется биотехнологией.

В отличие от этого, биоинженерия обычно рассматривается как смежная область, в которой больше внимания уделяется более высоким системным подходам (не обязательно непосредственно изменению или использованию биологических материалов ) для взаимодействия с живыми существами и их использования. Биоинженерия — это применение принципов инженерии и естественных наук к тканям, клеткам и молекулам. Это можно рассматривать как использование знаний, полученных в результате работы с биологией и манипулирования ею, для достижения результата, который может улучшить функции растений и животных. Соответственно, биомедицинская инженерия — это перекрывающаяся область, которая часто опирается и применяет биотехнологию (в различных определениях), особенно в определенных под-областях биомедицинской или химической инженерии, таких как тканевая инженерия , биофармацевтическая инженерия и генная инженерия .

Технологии генной инженерии

Генная инженерия за короткий срок оказала огромное влияние на развитие различных молекулярно-генетических методов и позволила существенно продвинуться на пути познания генетического аппарата.

Так, появилась технология CRISPR — инструмент редактирования генома. В 2014 году MIT Technology Review назвал его «самым большим биотехнологическим открытием века». Он основан на защитной системе бактерий, которые производят специальные ферменты, позволяющие им защищаться от вирусов.

«Каждый раз, когда бактерия убивает вирус, она разрезает остатки его генома, будь то ДНК или РНК, и сохраняет их внутри последовательности CRISPR, как в архив. Как только вирус атакует снова, бактерия использует информацию из «архива» и быстро производит защитные белки Cas9, в которых заключены фрагменты генома вируса. Если вдруг эти фрагменты совпадают с генетическим материалом нынешнего атакующего вируса, Cas9 как ножницами разрезает захватчика, и бактерия снова в безопасности», — поясняет Алевтина Федина, медицинский директор Checkme.

Уникальное открытие состоялось в 2011 году, когда биологи Дженнифер Дудна и Эммануэль Шарпантье обнаружили, что белок Cas9 можно обмануть. Если дать ему искусственную РНК, синтезированную в лаборатории, то он, найдя в «архиве» соответствие, нападет на нее. Таким образом, с помощью этого белка можно резать геном в нужном месте — и не просто резать, а еще и заменять другими генами.

Экономика инноваций

Черные дыры и генетические «ножницы»: итоги Нобелевской премии-2020

Теоретически, технология CRISPR может позволить редактировать любую генетическую мутацию и излечивать заболевание, которое она вызывает. Но практические разработки CRISPR в качестве терапии еще только в начальной стадии, и многое еще непонятно.

Есть и другие методы генной инженерии, например, ZFN и TALEN.

  • ZFN разрезает ДНК и вставляет туда заготовленный заранее новый фрагмент с помощью белков с ионами цинка (отсюда название — Zinc Finger Nuclease).
  • TALEN делает то же самое, только используя TAL-белки. Для обеих технологий приходится создавать отдельные белки, а это очень долгая работа, поэтому пока два этих метода особого применения не нашли.

Вклад биотехнологии в развитие медицины

Одним из «подарков дьявола» считалась возможность определения по ДНК генетически запрограммированных болезней. С одной стороны, это возможность предупредить человека об опасностях, но такая информация сама по себе травматична, и способна провоцировать болезни.

Однако «предопределенность» болезней оказалась отнюдь не абсолютной. У вполне здоровых пожилых людей при исследовании обнаруживаются гены болезней, от которых они должны давно умереть. Хотя наследственность никто не отменял, как и генетическую предрасположенность к тем или иным заболеваниям.

Сейчас идет речь не о том, чтобы просто получать информацию о будущих болезнях, но о том, что есть возможность исправлять дефектные участки ДНК. И это было бы прекрасно – ведь накопление генетических ошибок в человеческом сообществе способствует деградации вида гомо сапиенс.

Биотехнология: кратко

Очень часто понятие «биотехнология» путают с генной инженерией, возникшей в XX—XXI веках, а ведь биотехнология относится к более широкой специфике работы. Биотехнология специализируется на модификации растений и животных путем гибридизации и искусственного отбора для потребностей человека.

Эта дисциплина дала человечеству возможность улучшить качество пищевых продуктов, увеличить продолжительность жизни и продуктивность живых организмов — вот что такое биотехнология.

До 70-х годов прошлого века этот термин использовали исключительно в пищевой промышленности и сельском хозяйстве. И только в 1970 году ученые начали использовать термин «биотехнология» в лабораторных исследованиях, таких как выращивание живых организмов в пробирках или при создании рекомбинантных ДНК. Эта дисциплина базируется на таких науках, как генетика, биология, биохимия, эмбриология, а также на робототехнике, химических и информационных технологиях.

На основе новых научно-технологических подходов были разработаны методы биотехнологии, которые заключаются в двух основных позициях:

  • Крупномасштабном и глубинном культивировании биологических объектов в периодическом постоянном режиме.
  • Выращивании клеток и тканей в особых условиях.

Новые методы биотехнологии позволяют манипулировать генами, создавать новые организмы или менять свойства уже существующих живых клеток. Это дает возможность более обширно использовать потенциал организмов и облегчает хозяйственную деятельность человека.

Развитие и инвестиции

Биотехнологию сложно назвать молодой дисциплиной, но эта наука сегодня находится лишь в начале своего развития. Учёные считают, что возможности и направления, которые открываются благодаря новым знаниям, являются бесконечными. Загвоздка лишь в поддержке и должном финансировании. Любое исследование — это многие годы изысканий, использование мощности суперсовременных компьютеров и существенные финансовые затраты, а перспективы конкретных разработок могут быть туманны.

Неудивительно, что многие инвесторы просто не рискуют вкладываться в идею, опасаясь потерять миллионы долларов. К тому же официальная зарплата у биологов крайне высока, особенно на западе. В настоящее время на рынке биотехнологических разработок работают около десятка по-настоящему крупных компаний:

  1. Illumina специализируется на технологии ДНК-чипов, исследует генетические анализы и тесты на различные заболевания.
  2. Oxford Nanopore исследует продукцию и занимается разработкой взаимодействия с ДНК.
  3. Roche — это крупная фармацевтическая компания, которая ежегодно инвестирует в биотехнологии сотни миллионов долларов.
  4. Counsyl является держателем патента автоматизированного анализа ДНК, который используется для диагностики различных патологий.
  5. Editas Medicine исследует проблемы адаптации методик лабораторного редактирования геномов и использования полученных результатов в медицинской практике.

Перспективной технологией в медицине является так называемое секвенирование, то есть изучение последовательности нуклеотидов, находящихся в ДНК. Полностью расшифровав такие данные, можно определить участки молекулы дезоксирибонуклеиновой кислоты, которые отвечают за наследственные заболевания. В последующем на основании имеющейся информации медики могли бы предотвращать развитие опасных неизлечимых патологий. Как только такой процесс дойдёт до совершенства, появится возможность полностью избавиться от болезней, которые даже ещё не появились у конкретного человека.

Где применяется профессия?

Судя по последним открытиям в области биотехнологий, профессии биоинженера не угрожает потеря актуальности. Биотехнологии нашли применение в стремительно развивающейся робототехнике. Серьезные изменения переживает пищевая промышленность, где биотехнолог вскоре станет чуть ли не главной персоной.

Биотехнологи и биоинженеры востребованы в:

  • научно-исследовательских центрах. Занятым в этих учреждениях научным сотрудникам приходится решать задачи на глобальном уровне. Как правило, заказчиками исследований и практических разработок являются крупные компании. В последнее время деятельность научно-исследовательских центров сосредоточена в определении новых способностей и свойств живых организмов. Здесь изучается геном, идет работа по преобразованию ДНК и пр.;
  • медицине. С середины прошлого века биотехнологии стали неотъемлемой частью медицины. Исследования в этой области позволили побороть заболевания, ранее считавшиеся неизлечимыми. Ученым удалось узнать много нового о генетике и человеческой анатомии. Знания биоинженеров сейчас используются почти в каждой области медицины. Без них не обходится пластическая хирургия и пересадка костного мозга;
  • фармацевтике. Благодаря биотехнологиям фармацевтами разрабатываются более эффективные виды лекарств;
  • сельском хозяйстве. Селекция и гибридизация обеспечивают сельское хозяйство стойкими и урожайными видами культур. Биотехнологи участвуют в создании средств для борьбы с вредителями растений;
  • пищевой промышленности. С помощью биотехнологий улучшаются качественные и вкусовые свойства продуктов, увеличивается срок их хранения;
  • учреждениях образовательного типа. Завершив образовательный процесс, не все молодые специалисты покидают вуз. После получения педагогического образования они остаются в стенах альма-матер в качестве преподавателей. К этой категории относится до 30% всех выпускников со специальностями «биотехнолог» и «биоинженер».

Это лишь основные отрасли, где задействованы специалисты, работающие в сфере биотехнологий. При этом востребованность научных работников постоянно увеличивается.

Обязанностей специалиста

Биотехнолог изучает объект, проводит исследования, реализует проекты. Круг решаемых им задач напрямую зависит от сферы деятельности и квалификации. Согласно должностной инструкции, к основным обязанностям специалиста относятся:

  • работа над составами новых продуктов, корректировка технологий производственных процессов;
  • участие в испытаниях инновационных видов оборудования;
  • совершенствование применяемых технологий;
  • определение, необходимого для работы, биоматериала;
  • подготовка и применение технико-экономических индексов;
  • проведение контроля над техническими операциями;
  • обработка территорий и объектов, подвергшихся биологическому загрязнению;
  • подбор оптимального способа утилизации использованных материалов;
  • составление оперативных отчетов.

Помимо основных наук, связанных с применением биотехнологий, специалист обязан обладать организаторскими способностями, иметь математический склад ума, работать с профессиональным оборудованием, различными материалами и реактивами.

Методики

МЕТОДИКИ ИЗМЕРЕНИЙ, ПРИМЕНЯЕМЫЕ В ЦКП «ПРОМЫШЛЕНЫЕ БИОТЕХНОЛОГИИ»

  • Анализ веществ ренген-флуоресцентным методом
  • Анализ сложных смесей методом ВЭЖХ
  • Анализ сложных смесей методом КЭ
  • Газохроматографический анализ сложных смесей
  • Испытания активированных углей
  • Конструирование штаммов
  • Культивирование микроорганизмов в стерильных условиях.
  • Определение вторичной структуры белков, Измерение спектральных характеристик биологических объектов
  • Определение массы олигонуклеотидов. Получение спектров фрагментации (ms/ms) отдельных пептидов. Идентификация аминокислотных замен и/или модификаций в белке. Получение масс-спектров MALDI с проведением протеолиза в геле или растворе с последующей идентификацией продукта посредством ПО Mascot

Биоинформатика и бионика

Но биотехнологии – это не только учение о молекулах тканей и клеток живых организмов, это еще и применение компьютерных технологий. Таким образом, имеет место биоинформатика. Она включает в себя совокупность таких подходов, как:

  • Геномная биоинформатика. То есть методы компьютерного анализа, которые применяются в сравнительной геномике.
  • Структурная биоинформатика. Разработка компьютерных программ, которые предсказывают пространственную структуру белков.
  • Вычисление. Создание вычислительных методологий, которые могут управлять биологическими системами.

В этой дисциплине вместе с биологическими методами используются методы математики, статистических вычислений и информатики. Как в биологии используются приемы информатики и математики, так и в точных науках сегодня могут использовать учение об организации живых организмов. Как в бионике. Это прикладная наука, где в технических устройствах применяются принципы и структуры живой природы. Можно сказать, что это своеобразный симбиоз биологии и техники. Дисциплинарные подходы в бионике рассматривают с новой точки зрения как биологию, так и технику. Бионика рассматривала сходные и отличительные черты этих дисциплин. Эта дисциплина имеет три подвида — биологический, теоретический и технический. Биологическая бионика изучает процессы, которые происходят в биологических системах. Теоретическая бионика строит математические модели биосистем. А техническая бионика применяет наработки теоретической бионики для решения различных задач.

Как видно, достижения биотехнологий широко распространены в современной медицине и здравоохранении, но это лишь вершина айсберга. Как уже было сказано, биотехнология начала развиваться с того момента, как человек стал готовить себе пищу, а после широко применялась в сельском хозяйстве для выращивания новых селекционных культур и вывода новых пород домашних животных.

Оплата труда

Ступеньки карьеры и перспективы

Биотехнологи могут работать на позициях биохимика, биолога, вирусолога, микробиолога. Начинающие специалисты, как правило, устраиваются лаборантами химического анализа в фармацевтических компаниях или на предприятиях пищевой промышленности. На заводах по производству лекарств и пищевых добавок можно работать контролером производства. Карьеру можно сделать по вертикали, повышая профессиональный уровень и, соответственно, разрядность должности, вплоть до руководителя производства. Работая в НИИ, при стремлении к научным открытиям, можно сделать карьеру в научном мире.

Знаменитые биотехнологи

Ю.А.Овчинников – один из самых известных ученых в биотехнологии, ведущий ученый в сфере мембранной биологии. Автор множества научных работ (более 500), в том числе «Биоорганическая химия», «Мембрано-активные комплексоны». Его именем названо Общества биотехнологов России им. Ю.А.Овчинникова.

Интересные факты о профессии

Новости трансгенной инженерии. Учёные скрестили попугая и сахарный тростник. Теперь сахар сам говорит, сколько его класть в чай. 

История возникновения биотехнологии как науки:

В самые давние времена люди, сами того не осознавая, применяли биотехнологии в выпечке хлеба, в производстве вина и кисломолочных продуктов.

Научную основу под все подобные процессы подвел Л.Пастер в XIX веке, доказав, что процесс брожения обусловлен микроорганизмами. Но в современном виде биотехнология как наука возникла не сразу, а пройдя несколько этапов:

  1. В 40-50-е годы ХХ века в результате биосинтеза пенициллина была создана микробиологическая промышленность.
  2. В 60-70-е годы произошло развитие клеточной инженерии.
  3. В 1972 году создание первой гибридной молекулы ДНК «in vitro» в США повлекло за собой возникновение генетической инженерии. После этого стало возможным преднамеренное изменение генетической структуры живых организмов. В 70-е годы возник и сам термин «биотехнология».

Поэтапность появления биотехнологии обусловило её неразрывную связь с клеточной и молекулярной биологией, биохимией, молекулярной генетикой и биоорганической химией.

Автор статьи Флюра Ягофарова.

Основные виды и термины

Биотехнология — это наука создания различных веществ путем использования биологически естественных компонентов. Фактически это манипулирование животными и растительными клетками для получения нужных результатов.

Сегодня, в век компьютерных технологий, биотехнология сделала существенный шаг вперёд. На различных факультетах в университетах и в лабораторных условиях проводятся многочисленные изыскания, основная цель которых заключается в том, чтобы создать действенные лекарства и существенно упростить жизнь человека. Основными направлениями, задачами и темами этой науки являются:

  • биомедицина;
  • биоинженерия;
  • гибридизация.

В биоинженерии изучают различные области медицины, а также влияние клеток и наследственных факторов с генами на развитие заболеваний. Это направление позволяет не только разработать суперсовременные технологии лечения различных патологий, но и предупреждает возникновение тяжелых болезней, которых можно было избежать путем редактирования ДНК.

Специализация биомедицина — это узкоспециализированный раздел медицинских знаний, объектом которого являются патологические состояния, строение тела человека и возможности коррекции различных болезней. В эту дисциплину также включается наномедицина, в которой жизнедеятельность биологических видов изучается на молекулярном уровне.

Высшим достижением биотехнологии считается генная инженерия, под которой понимают совокупность технологий и знаний получения ДНК и РНК. Это управление генами живых существ и растений, что позволяет получать заданные свойства у клеток. Например, ученые со специальностью биология планируют с помощью технологии исправления генома человека решать проблемы с различными онкологическими заболеваниями.

Также к этому разделу науки относится клонирование, что позволяет за счет использования специальных технологий получать идентичные генетические организмы, выведенные вегетативным бесполым размножением. На сегодняшний день клонированы были не только растения, но и десятки видов животных, в том числе лошади, кошки, собаки и овцы. Технологически возможно даже копирование человека, однако нормативная база и нравственные аспекты не позволяют людям этой профессии заниматься такой работой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector